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Motivation

I Search for New Physics in transitions
→ Measurement of the properties of oscillating particles

I B0 and K 0 are well explored by other experiments

I B0
s sector still partially unexplored.

I 2006: Mixing frequency ∆ms of the B0
s measured by CDF and D∅

I Now: Measurement of the mixing phase βs

I Accessible through interference of decays with and without mixing

Bs −→ J/Ψ(→ µ+µ−) φ(→ K+K−)
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The CKM Matrix

I The Cabibbo-Kobayashi-Maskawa matrix connects mass and weak quark
eigenstates 0@ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1A
I To conserve probability, CKM matrix must be unitary.

I Unitary relations can be represented as unitarity triangles.

I Subject of this measurement βSM
s = arg(− VtsV

∗
tb

VcsV
∗
cb

)



The Neutral B0
s -System

Time evolution of Bs flavor eigenstates described by Schrödinger equation:

i
∂

∂t

„
|B0

s (t) >

|B̄0
s (t) >

«
=

„
M− i

2
Γ

«„
|B0

s (t) >

|B̄0
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«
Diagonalize mass (M) and decay matrices (Γ) → mass eigenstates:

|BH
s (t) > = p|B0

s (t) > −q|B̄0
s (t) >

|BL
s (t) > = p|B0

s (t) > +q|B̄0
s (t) >

Flavor eigenstates differ from mass eigenstates and mass eigenvalues are
different. Bs oscillates with frequency ∆ms = mH −mL ≈ 2|M12|

CDF D∅
∆ms = (17.77± 0.12)ps−1 ∆ms = (18.56± 0.87)ps−1

Mass eigenstates have different decay widths:

∆Γ = ΓL − ΓH ≈ 2|Γ12|cos(φs) with φs = arg

„
− M12

Γ12

«



Relationship of the Phases

The different phases and their SM expectation value:

φSM
s = arg

„
− M12

Γ12

«
≈ 4 · 10−3 and βSM

s = arg

„
− VtsV

∗
tb

VcsV ∗cb

«
= 0.02

New Physics affects both phases by same quantity 1:

2βJ/Ψφ
s = 2βSM

s − φNP
s

φJ/Ψφ
s = φSM

s + φNP
s

If the new physics phase φNP
s dominates over the SM phases 2βSM

s and φSM
s

→ neglect SM phases and obtain:

2βJ/Ψφ
s = −φNP

s = −φJ/Ψφ
s

1
arxiv:0705.3802v2



Decay Topology

Bs −→ J/Ψ (→ µ+µ−) φ (→ K+K−)
(spin=0) (spin=1) (spin=1)

Conservation of angular momentum lead to three different final states:
L = 0, 2 (s-wave),(d-wave) CP even
L = 1 (p-wave) CP odd

Choice of basis:

Transversity basisa with
corresponding decay
amplitudes:
A⊥ CP odd
A0 CP even
A‖ CP even

and angles

~ρ = (ΨT , θT , φT )

a
hep-ph/9511363



The Tevatron

I Tevatron: circular particle accelerator at the
Fermilab (near Chicago, Illinois)

I Proton-Antiproton collisions

I
√

s = 1.96TeV

I Two detectors: CDF and D∅

Luminosity / Experiment:

Int. Lumi. fb−1

delivered ≈ 5.0
on tape ≈ 4.2
this analysis ≈ 2.8



The Detectors

CDF D∅

I Strong tracking system

I Good particle identification
(dE/dx and TOF)

I Large muon and tracking
coverage

I B field direction reversable



Signal Sample

Mixing phase βs and decay width difference ∆Γ are extracted using an
unbinned maximum likelihood fit in

I Mass

I Tagging information

I Proper decay time and Transversity angles

CDF D∅
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Flavour Tagging

Mixing phase βs and decay width difference ∆Γ are extracted using an
unbinned maximum likelihood fit in

I Mass

I Tagging information

I Proper decay time and Transversity angels

Tagging used to increase the sensitivity
on the parameters.
Approach:

I OST: exploits decay products of
other b-hadron in the event

I SST: exploits the correlations with
particles produced in
fragmentation

Output: Decision (b or b̄) and probability of being correct



Proper Decay Time

Mixing phase βs and decay width difference ∆Γ are extracted using an
unbinned maximum likelihood fit in

I Mass

I Tagging information

I Proper decay time and Transversity angels

CDF D∅
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CDF: τ(Bs) = (1.53± 0.04(stat.)± 0.01(syst.))ps
D∅ : τ(Bs) = (1.52± 0.05(stat.)± 0.01(syst.))ps



Lifetime and Transversity Angels

Time and angular probability for B0
s :

d4P(t, ~ρ)

dtd~ρ
∝ |A0|2f1(~ρ)T+(t) + |A|||2f2(~ρ)T+(t)

+ |A⊥|2f3(~ρ)T−(t) + |A0||A|||f5(~ρ) cos(δ||)T+(t)

+ |A||||A⊥|f4(~ρ)U(t) + |A0||A⊥|f6(~ρ)V(t)

T±(t) = e−Γt [cosh(∆Γt/2)∓ cos(2βs) sinh(∆Γt/2)

∓ η sin(∆ms t) sin(2βs)]

U(t) = e−Γt
ˆ
cos(δ⊥ − δ||) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥ − δ||)

− η sin(∆ms t) cos(δ⊥ − δ||) cos(2βs)
˜

V(t) = e−Γt [cos(δ⊥) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥)

− η sin(∆ms t) cos(δ⊥) cos(2βs) ]

Explanation

I Angular functions

I Polarization
amplitudes

I Time evolution

I Strong phases
δ⊥ = arg(A⊥A∗0 )
δ‖ = arg(A‖A

∗
0 )

I Decay width
difference

I CPV Phase
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Results

I Errors of βs and ∆Γ are not Gaussian → study confidence region

I Both experiments show the same tendency
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2
http://www-cdf.fnal.gov/physics/new/bottom/080724.blessed-tagged BsJPsiPhi update prelim/

3
http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B08A/



Combined Results

Combination of the up-to-date D∅ measurement with the previous CDF
measurement 4:
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4
http://hep.physics.indiana.edu/˜rickv/hfag/combine dGs.html



Evolution in the Past and Future Possibilities

Evolution of the deviation from the SM:
Probability to observe a non-SM βs at
CDF:

Date Analysis Deviation

Dec 2007 CDF (1.35/fb) 1.5 σ
Mar 2008 D∅ (2.8/fb) 1.7 σ
Jul 2008 Combination 2.2 σ
Jul 2008 CDF (2.8/fb) 1.8 σ

Fluctuations? Maybe! But the coherent

pattern is interesting!
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Conclusions and Future Plans

Conclusions:

I Measurements of CPV in Bs system done by both CDF and D∅
I Study confidence region in ∆Γ-βs plane

I Both CDF and D∅ observe 1-2 σ deviations from SM predictions

I The (old) combined HFAG result has 2.2 σ deviation

Future Plans:

I Both Experiments: Collect more data (Plan: 6-8/fb)

I D∅ : Selection improvements

I CDF: Improvements in Tagging and PID
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Thanks for your Attention
and

Stay tuned for Updates!



Angular Functions

f1(~ρ) = 2cos2ΨT (1− sin2θT cos2φT )

f2(~ρ) = sin2ΨT (1− sin2θT sin2φT )

f3(~ρ) = sin2ΨT sin2θT

f4(~ρ) = −sin2ΨT sin2θT sinφT

f5(~ρ) = 1/
√

2sin2ΨT sin2θT sin2φT

f6(~ρ) = 1/
√

2sin2ΨT sin2θT cosφT



D∅ : Angular Projections
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CDF: Angular Projections
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D∅ : Likelihood Scan
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CDF: 2D likelihood profile comparison with published result
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CDF: OST in B+

NN OST predicted dilution
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CDF: OST in B−
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CDF: OST in B±
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CDF: Neural Network for B±

Neural network output
-1.0 -0.5 0.0 0.5 1.0

C
an

di
da

te
s 

pe
r 

0.
02

0

2000

4000

6000

8000

10000

12000

14000

16000

Signal
Background

CDF Run 2 Preliminary -1L ~ 2.8 fb



CDF: Neural Network for Bs

Neural network output
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CDF: Invariant Mass of B+
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